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J. Phys.: G n d m r .  Matter 4 (1992) L77-L83. Printed in the UK 

LETTER TO THE EDITOR 

Macroscopic behaviour of longitudinal optical phonons in a 
A1As/GaAs/AIAs quantum well 

X Zianni, P N Butcher and I Dharssi 
Physics Department. Universily of Warwick, Covenq CV4 7& UK 

AbslracL Calculation of longitudinal optical (LO) mode polenlial functions and dispersion 
curves are made for  a AIAS/GaAS/AIAr quantum well using a macroscopic model. The 
interface boundary conditions employed are conlinuily of polenlial and normal compo- 
nenls of both electric flux density and relative ionic displacement. In the nondispersive 
limit the model yields unique potential functions of two types: confined modes and 
inletface modes. The mn5ned mode polenlial functions are almost identical to lhore 
calculated for a microscopic model by Huang and Zhu. The interface modes are identical 
to those predicted by both the microscopic model and the dielectric continuum model. 
The introduclion of bulk dispersion in GaAs produces modes which a re  hybrids of the 
confined and interface phonons. 

Microscopic models of the behaviour of optical phonons in semiconductor hetero- 
structures necessarily involve extensive numerical calculations [1-8]. A simple macro- 
scopic model giving analytical results close to those of microscopic models would be 
useful in studies of the interaction of phonons with electrons and light. A natural 
starting point is the dielectric continuum model (DCM) based on the bulk phenomeno- 
logical equations of Born and Huang 1111. The modes predicted are like those of 
Fuchs and Kliever [lo]. They have antinodes in the normal component of the Gaks 
displacement at the interfaces in a AlAslGaAs/Al& quantum well, which is contrary 
to the results of microscopic calculations [7,8]. A hydrodynamic model [12,13] has 
been proposed to avoid this difficulty. However, a hydrodynamic approach is not 
generally valid in the systems under discussion [9] and it leads to other contradictions 
to the microscopic calculations [14]. 

In this letter we describe a simple modification of the dielectric continuum model 
(the MDCM) which yields results almost identical to those predicted by the microscopic 
model of Huang and Zhu [1,2] in the dispersionless limit. We describe the model 
below and discuss the results obtained from it later both in the non-dispersive limit 
and when finite dispersion is introduced in the GaAs. 

We use the phenomenological equations of Born and Huang [ l l ]  modified to 
include parabolic bulk dispersion [12]. In electrcstatic units the equations for Lo 
phonons are: 
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where ut is the displacement of the positive ions relative to the negative ions mul- 
tiplied by the square root of the reduced mass per unit volume, P is the dielectric 
polarization, E is the electric field, E ,  and E- are the static and the high frequency 
dielectric constants respectively and + is the transvene optical resonant frequency. 
The parameter b introduces parabolic dispersion. We ignore retardation so that 

V x E = O  (3) 

and for LO modes in the quantum well structure we may write 

E = -VV (4) 

v = a( z)e"llEll. (5) 

with 

Here z is measured perpendicular to the AlAsiGaAslAIAs interfaces, zII lies in the 
transverse plane and kll is a wave vector in that plane. 

We find from (l), (2) and (3) that Maxwell's equation V I  D = 0 leads in each 
material to the fourth-order differential equation 

b 2 ( d 4 I  - k i 0 " )  + ( w t  - w2 - bzk;) (@" - ki@) = 0 (6) 

in which wL = ( e , / ~ , ) ' / ~ w ~ .  It follows that 

@ = Ae'"" + Bebtnz  + Cekll" + De-kII" 

where 

(7) 

Equation (8) is equivalent to the bulk dispersion relation for LO phonons: u2 = 
w t  - 6*( ki + n'). The coefficients A,  B, C, D and n in (7) remain to be determined 
by the interface boundary conditions. 

We confine our attention to modes with frequencies close to wL for G a b .  Then 
the effect of dispersion in the AlAs is unimportant and we set b = 0 in AlAs region. 
We also set A = B = 0 there because propagating modes are not possible without 
dispersion. Finally we keep Q, finite as -t +cu by putting C = 0 in the right-hand 
AlAs region (in which I - +CO) and D = 0 in the left-hand AlAs region. Six 
coeffrcients remain to be determined. We determine them by using the boundary 
conditions of the DCM (a and D, continuous at each interface) to which we add a 
further boundary condition: w ,  also continuous at each interface [6]. 

It is convenient to measure z from the middle of the quantum well because 
the system is symmetrical about the plane z = 0. Consequently we find modes for 
which G(z) is even (even modes) and modes for which @(z)  is odd (odd modes). 
The matching conditions and determinental consistency conditions are easily derived 
i~ both cases. Let d be the half-width for the GaAs layer. Then the consistency 
conditions for even and odd modes are respectively 
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and 

&,a, - E l a 2  
n c o t ( n d ) a  = -ICII coth(k d 

11 ) ~ ~ + ~ ~ c o t h ( k ~ ~ d )  

where n is given by (8) in the GaAs layer with b f: 0. In these equations 

w:. - w  2 
1 E j  = E  

" j W + ,  - w 2  

E o j  - E  . ' I 2  W=j 
a.= ( 4 T m ~ )  I w:, - w2 

with j = 1 , 2  denoting AlAs and GaAs respectively. 
The solutions of (9) and (IO) as a function of kll give the dispersion relation for 

each mode. Once this is obtained the coefficients in (7) and @( z )  can be determined. 
The values of the parameters of bulk GaAs and AlAs used in our calculations 

are taken from reference [U]. We set d = 50 A and begin by discussing the non- 
dispersive limit when b -, 0. There are two possibilities allowed by equations (9) and 
(10). In the first case n remains finite, then we see from (8) that w + wL2 and from 
(11) that e2 --f 0. Hence (9) and (10) reduce to 

n t a n ( n d )  = -kll tanh(klld) 

ncot (nd)  = kll tanh(kl,d) 

which determine n uniquely. The corresponding potential functions are shown by 
solids lines in figure l ( a )  for klld = 0.05~ and in figure l(b) for klld = 0 . 5 ~ .  
The dashed lines show the results obtained in the microscopic calculations of Huang 
and Zhu [Z]. When the microscopic model curves are omitted it is because they 
are indistinguishable from the results of our macroscopic model on the scale of the 
graphs. The dotted lines show a rough analytical fit to the microscopic results which 
are described in [Z]. We see that the model used here provides an almost perfect fit 
to the microscopic results. These modes with finite n were first proposed by Dharssi 
[16] without recourse to the limiting procedure used here. The argument was open 
to the objection that the propagating modes are infinitely degenerate when there is 
no dispersion so that there is no reason to take just turo propagating waves in (7). 
This diffculty is removed by first including dispersion so that n is uniquely defined 
and then letting b + 0 so as to simplify the results. We see that all the modes are 
confined to the GaAs layer. Moreover, it is easy to verify that a@/dz (and hence 
w,) vanishes at the interfaces as well as @. The values of n when kll - 0 may be 
determined from (14) and (15). They are n = mT/Zd with m = 2,4 ,6 ,  ... for 
the even modes and m - 3 , 5 , 7 , .  . . for the odd modes. Huang and Zhu obtain the 
same results and give exact values of m in the odd case [2]. 

The second possibility when b -, 0 is that n diverges, because w - wL2. When 
w > wLz we see from (8) that n becomes purely imaginary as well as having a 



Figure 1. The potential functions for (a) klld = O . O 5 r r  and (6) klld = 0 . 5 ~  predicted 
by (i) the MDCM in the dispersionless limit (full lines); (ii) Huang and Zhuk microscopic 
model in the dispersionless limit (dashed lines) and (iii) Huang and Zhuf macroscopic 
model (dotted lines). 

magnitude which approaches infinity. Consequently the left-hand sides of (9) and 
(10) both diverge so that the dispersion relations reduce to 

E *  + e 2  tanh(kl ld)  = 0 (16) 

e l  +E2coth(k l ld)  = 0 .  (17) 

These are just the dispersion relations of the interface modes of the DCM which Huang 
and Zhu find are reproduced by their microscopic calculations in the non-dispersive 
limit [2]. Our model fails to yield (16) and (17) when w < wL because n remains 
real. The reason is that the assumption of parabolic bulk dispersion is misleading 
in this case. Equations (16) and (17) are recovered when a bulk dispersion relation 
which is more realistic for large wave vectors is introduced. 

We see from the above discussion that there is a clear distinction between interface 
and confined modes in the dispersionless limit. We turn now to the case when the 
GaAs dispersion is kept finite and show that the modes are hybrids having both 
interface and confined phonon character. 

Figure 2(a) shows the dispersion curves for even modes which are the solutions of 
equation (9). The potential functions are presented in figure 3(a) for k d = 0.05~ 
and figure 3(b) for kl ld  = 0 . 5 ~ .  At high frequencies the even modes ha?k dispersion 
curves which are parabolic (figure 2(a))  and potential functions which are confined 
(figure 3).  The potential functions do  not differ significantly from thase shown in 
figure 1 for the dispersionless limit. On the other hand, we see in figure 2(a) that 
for modes with a frequency approaching (wL2 -t +)/2 the parabolic dispersion 
is distorted. The distortion is due to the interface admixture which increases with 
k because the dispersion curve comes closer to that for the even interface phonon 
(dashed curve in figure 2(a)) when k,,d = 0 . 5 ~ .  This behaviour is particularly clear 
for the last mode in figure (2(a)). Another result of the increase of the interface 
admixture with kll is,that for klld = 0.5~ the modes after the sixth leak into the AlAs 
(see figure 3(b)),  which does not happen when kl,d = 0 . 0 5 ~ .  Finally, we note that in 
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Flgurc 2. The dispersion culves (full lines) for (m) even modes and (a) odd modes. The 
dashed culyes are lhe dispersion c u m  for lhe corresponding interlace phonons in rhe 
DCM. 

the long wavelength limit kll - 0 equation (9) gives n = m l r / 2 d ,  m = 2,4,6,. . . 
in agreement with the theory in the dispersionless limit. 

Flgure 3. 
klld = 0 . 5 ~ .  

The polenlial functions for wen modes for (a) klld = 0.05~ and (a) 

Figure 2(6) shows the dispersion curves for odd modes which are the solutions of 
equation (10). The potential functions are presented in figure 4(a)  for k,,d = 0 . 0 5 ~  
and figure 4(b) for k l l d  = 0.571.. We see by inspection of figure 2(b) that, for large IC,,, 
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Figum 4. 
klld = 0.5n. 

The potential [unctions [or odd modes for ( a )  klld = 0.05n and ( b )  

the dispersion is again almost parabolic The corresponding modes (figure 4(b)) are 
confined and have potential functions close to those predicted in the dispersionless 
limit. The odd modes with lower frequency, closer to (wL2 t ~ ) / 2 ,  begin to 
leak into the AlAs layers and show stronger interface character. As kll becomes 
smaller the parabolic dispersion is distorted. The distortion follows the  odd mterface 
phonon dispersion curve [lo] which is plotted as a dashed line in figure 2(b).  The 
number of modes that acquire interfacial character is larger for k l l d  = 0.05~ than 
for klla = 0.5?r, because the odd interface phonon is more dispersive for small kll. 
The dispersion C U N ~ S  for the odd modes are almost horizontal straight lines when 
kll is large because b is rather small in GaAs. If these lines arc extrapolated to 
kll = 0 we find points of intersection with the dashed curve for the corresponding 
interface phonon. Strong admixture of the confined and interface character of the 
true modes occurs near these points. Moreover, we see that the true dispersion 
curves bend upwards there and, when k -+ 0,they follow the extrapolated dispersion 

n = m ? r / Z d ,  m = 3,5,7,. . .. We note that m assumes evnclly odd values and not 
approximately an odd integer as in the dispersionless limit.) 

We have ignored retardation throughout our calculations for the following reason. 
The space scale of the system is set by the width of the GaAs layer which is typically 
100 k An electromagnetic wave will traverse this distance in the order of 10-17s 
which is much less than the period (10-13s) of the Lo phonons with which we are 
concerned (see, for example, [IS]). 

Closer comparison of the predictions for the odd modes when kll is small for the 
model used here with results for a microscopic model would be vely illuminating. 
We also find strong hybridization for modes with frequencies lying between the two 
interface phonon curves and microscopic calculations in this region would also be 

curves for the confined mode with one It ess node. (In this limit, equation (IO) gives 
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useful. 
While this letter was in the course of publication the authors became aware of a 

calculation by Nash reaching similar conclusions [19]. Ridley has recently discussed 
optical phonons in a quantum weU with infinitely rigid side walls 1201. 

X Zianni wishes to acknowledge SERC and the Hirst Research Center for financial 
support and Hui lhng for helpful discussions. P N Butcher is grateful for discussions 
with B F Zhu, F Bechstedt, M Babiker and F Garcia-Moliner. 
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