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LETTER TO THE EDITOR .

Macroscopic behaviour of longitudinal optical phonons in a
AlAs/GaAs/AlAs quantum well

X Zianni, P N Butcher and I Dharssi
Physics Department, University of Warwick, Coventry CV4 TAL, UK

Abstract. Calculation of longitudinal optical (L0) mode potential functions and dispersion
curves are made for a AlAs/GaAs/AlAs quantum well using a macroscopic model. The
interface boundary conditions employed are comtinuity of potential and pormal compo-
nents of both electric flux density and relative ionic displacement. In the non-dispersive
limit the model yields unique potential functions of two lypes: confined modes and
interface modes. The confined mode potential functions are almost identical o those
calculated for a microscopic model by Huang and Zhu, The interface modes are identical
to those predicted by both the microscopic model and the dielectric continuum model
The introduction of bulk dispersion in GaAs produces modes which are hybrids of the
confined and interface phonons.

Microscopic models of the behaviour of optical phonons in semiconductor hetero-
structures necessarily involve extensive numerical calculations {1-8]. A simple macro-
scopic model giving analytical results close to those of microscopic models would be
useful in studies of the interaction of phonons with electrons and light. A natural
starting point is the dielectric continuum model (DCM) based on the bulk phenomeno-
logical equations of Born and Huang [11]. The modes predicted are like those of
Fuchs and Kliever [10]. They have antincdes in the normal component of the GaAs
displacement at the interfaces in a AlAs/GaAs/AlAs gquantum well, which is contrary
to the results of microscopic calculations [7,8]. A hydrodynamic model [12,13] has
been proposed to avoid this difficulty. However, a hydrodynamic approach is not
generally valid in the systems under discussion [9] and it leads to other contradictions
to the microscopic calculations [14].

In this letter we describe a simple modification of the dielectric continuum model
(the MDCM) which yields results almost identical to those predicted by the microscopic
model of Huang and Zhu [1,2] in the dispersionless limit, We describe the model
below and discuss the results obtained from it later both in the non-dispersive limit
and when finite dispersion is inticduced in the GaAs.

We use the phenomenological equations of Born and Huang [11] modified to
include parabolic bulk dispersion [12]. In electrostatic units the equations for LO
phonons are:
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where w is the displacement of the positive ions relative to the negative ions mul-
tiplied by the square root of the reduced mass per unit volume, P is the dielectric
polarization, F is the electric field, €, and €, are the static and the high frequency
dielectric constants respectively and wy is the transverse optical resonant frequency.
The parameter b introduces parabolic dispersion. We ignore retardation so that

VXE=0 (3)
and for LO modes in the quantum well structure we may write
=-VV 4
with
V = &(z)e*n, (&)

Here z is measured perpendicular to the AlAs/GaAs/AlAs interfaces, z lies in the
transverse plane and &, is a wave vector in that plane.

We find from (1), (2) and (3) that Maxwell’s equation V - I} = 0 leads in each
material to the fourth-order differential equation

DM — k") + (Wl — w? — bTF NP — kf®) = 0 (6)

in which w; = (€,/€4)/%wy. It follows that
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Equation (8) is equivalent to the bulk dispersion reiation for LO phonons: w? =
wi —b%( kﬁ +n?). The coefficients A, B, C, D and n in (7) remain to be determined
by the interface boundary conditions.

We confine our attention to modes with frequencies close to wy for GaAs. Then
the effect of dispersion in the AlAs is unimportant and we set b = 0 in AlAs region.
We also set A = B = 0 there because propagating modes are not possible without
dispersion. Finally we keep ¢ finite as =z — oo by putting C = 0 in the right-hand
AlAs region (in which » — +4o0) and D = 0 in the left-hand AlAs region. Six
coefficients remain to be determined. We determine them by using the boundary
condijtions of the bcM (® and D, continuous at each interface) to which we add a
further boundary condition: w, also continuous at each interface [6].

It is convenicnt to measure z from the middle of the quantum well because
the system is symmetrical about the plane z = 0. Consequently we find modes for
which ®(z) is even (even modes) and modes for which ®(z) is odd (odd modes).
The matching conditions and determinental consistency conditions are easily derived
in both cases. Let d be the half-width for the GaAs jayer. Then the consistency
conditions for even and odd modes are respectively
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and
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where n is given by (8) in the GaAs layer with b # 0. In these equations
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with j = 1,2 denoting AlAs and GaAs respectively.

The solutions of (9) and (10) as a function of k give the dispersion relation for
each mode. Once this is obtained the coefficients in (7) and &(2) can be determined.

The values of the parameters of bulk GaAs and AlAs used in our calculations
are taken from reference [15]. We set d = 50 A and begin by discussing the non-
dispersive limit when b — Q. There are two possibilities allowed by equations (9) and
(10). In the first case n remains finite, then we see from (8) that w — wy, and from
(11) that e, — 0. Hence (9) and {10) reduce to

ntan(nd) = —k) tanh(k;d) (14)
ncot(nd) = ky tanh(k"d) (15)

which determine n uniquely. The corresponding potential functions are shown by
solids lines in figure 1(a) for kyd = 0.05x and in figure I(d) for kyd = 0.5x.
The dashed lines show the results obtained in the microscopic calculations of Huang
and Zhu [2]. When the microscopic model curves are omitted it is because they
are indistinguishable from the results of our macroscopic model on the scale of the
graphs. The dotted lines show a rough analytical fit to the microscopic results which
are described in [2]. We see that the model used here provides an almost perfect fit
to the microscopic results. These modes with finite » were first proposed by Dharssi
[16] without recourse to the limiting procedure used here. The argument was open
to the objection that the propapating modes are infinitely degenerate when there is
no dispersion so that there is no reason to take just two propagating waves in (7).
This difficuity is removed by first including dispersion so that n is uniquely defined
and then letting b — 0 so as to simplify the results. We see that all the modes are
confined to the GaAs Jayer. Moreover, it is easy to verily that 5% /82 (and hence
w, ) vanishes at the interfaces as well as ®. The values of n when ky — 0 may be
determined from (14) and (15). They are n = m~x/2d with m = 2,4,6,... for
the even medes and m ~ 3,5,7,. .. for the odd modes. Huang and Zhu obtain the
same results and give exact values of m in the odd case [2).

The second possibility when b — 0 is that n diverges, because w — wy,. When
w > wp, we see from (8) that n becomes purely imaginary as well as having a
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Figure 1. The potential functions for {(a) k| d = 0.057 and (&) kd = 0.5 predicted
by (i) the MDCM in the dispersionless limit (full lines); (ii) Huang and Zhu's microscopic
model in the dispersionless limit {dashed lines) and (iii) Huang and Zhu's macroscopic
model (dotted lines).

magnitude which approaches infinity. Consequently the left-hand sides of (9) and
(10) both diverge so that the dispersion relations reduce to

£, + gy tanh(kyd) =0 (16)
£, + e, coth(kyd) = 0. (17

These are just the dispersion relations of the interface modes of the DCM which Huang
and Zhu find are reproduced by their microscopic calculations in the non-dispersive
limit [2]. Our model fails to yield (16) and (17) when w < w; because n remains
real. The reason is that the assumption of parabolic bulk dispersion is misleading
in this case. Equations (16) and (17) are recovered when a bulk dispersion relation
which is more realistic for farge wave vectors is introduced.

We see from the above discussion that there is a clear distinction between interface
and confined modes in the dispersionless limit. We turn now to the case when the
GaAs dispersion is kept finite and show that the modes are hybrids having both
interface and confined phonon character.

Figure 2(a) shows the dispersion curves for even modes which are the solutions of
equation (9). The potential functions are presented in figure 3(a) for kyd = 0.05=
and figure 3(b) for &yd = 0.5m. At high frequencies the even modes have dispersion
curves which are parabolic (figure 2(e)) and potential functions which are confined
(figure 3). The potential functions do not differ significantly from those shown in
figure 1 for the dispersionless limit. On the other hand, we see in figure 2(a) that
for modes with a frequency approaching (wy, + wry)}/2 the parabolic dispersion
is distorted. The distortion is due to the interface admixture which increases with
ky because the dispersion curve comes closer to that for the even interface phonon
(&ashed curve in figure 2(a)) when kyd = 0.57%. This behaviour is particularly clear
for the last mode in figure (2(e)). Another result of the increase of the interface
admixture with % is that for kyd = 0.57 the modes after the sixth leak into the AlAs
(see figure 3(b)), which does not happen when kyd = 0.05~. Finally, we note that in
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Figure 2. The dispersion curves (full lines) for (a) even modes and (b) odd modes. The
dashed curves are the dispersion curves for the corresponding interface phonons in the
DCM.

the long wavelength limit &y — 0 equation (9) gives n = mn/2d, m = 2,4,6,...
in agreement with the theory in the dispersionless limit.
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Figure 3. The potential functions for even modes for (a) kd = 0.05x and (b)
k" d=0.5m

Figure 2(b) shows the dispersion curves for odd modes which are the solutions of
equation (10). The potential functions are presented in figure 4(a) for kyd = 0.057
and figure 4(b) for kyd = 0.57. We see by inspection of figure 2(b) that, for large kijs
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Figare 4. The potentisl functions for odd modes for (a) kyd = 0.057 and ()
k“d = 0.57.

the dispersion is again almost parabolic. The corresponding modes (figure 4(b)}) are
confined and have potential functions close to those predicted in the dispersionless
limit. The odd modes with lower frequency, closer to (wp, + wry)/2, begin to
leak into the AlAs layers and show stronger interface character. As k; becomes
smaller the parabolic dispersion is distorted. The distortion follows the odd interface
phonon dispersion curve [10] which is plotted as a dashed line in figure 2(b). The
number of modes that acquire interfacial character is larger for kyd = 0.057 than
for kyd = 0.5, because the odd interface phonon is more dispersive for small k.
The dispersion curves for the odd modes are almost horizontal straight lines when
ky is large because b is rather small in GaAs. If these lines arc extrapolated to
ky = 0 we find points of intersection with the dashed curve for the corresponding
interface phonon. Strong admixture of the confined and interface character of the
true modes occurs near thesc points. Moreover, we see that the true dispersion
curves bend upwards there and, when k; — 0,they follow the extrapolated dispersion
curves for the confined mode with one hcss node. {In this limit, equation (10) gives
n=mnf2d, m =3,5,7,.... We note that m assumes exactly odd values and not
approximately an odd integer as in the dispersionless limit.)

We have ignored retardation throughout our calculations for the following reason.
The space scale of the system is set by the width of the GaAs layer which is typically
100 A. An electromagnetic wave will traverse this distance in the order of 10~17s
which is much less than the period (10~3) of the LO phonons with which we are
concerned (see, for example, [18]).

Closer comparison of the predictions for the odd modes when k;, is small for the
model used here with results for a microscopic model would be very illuminating.
We also find strong hybridization for modes with frequencies lying between the two
interface phonon curves and microscopic calculations in this region would aiso be
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useful.

While this letter was in the course of publication the authors became aware of a
calculation by Nash reaching similar conclusions [19]. Ridley has recently discussed
optical phonons in a quantum well with infinitely rigid side walls [20}

X Zianni wishes to acknowledge SERC and the Hirst Research Center for financial
support and Hui Tang for helpful discussions. P N Butcher is grateful for discussions
with B F Zhu, F Bechstedt, M Babiker and F Garcia-Moliner.
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